set as homepage | add to favorites for collection | contact us
Notice:
PublicationsEnrollment
Hot News / Hot news
2020 - 08 - 23
点击次数:
Article: Applications of super hydrophobic liquid-solid friction nanogenerators as droplet sensor...
2020 - 08 - 19
点击次数:
[Research Trends] Professor Yang Guang's team, School of Life Sciences, Huazhong University of Sc...
2020 - 07 - 18
点击次数:
July 9, 2020Bricard and clemence, international students in 3-Bio research group, successfully co...
2020 - 07 - 15
点击次数:
On February 20th, Advanced Science published online the latest genetic and functional modificatio...
2020 - 07 - 10
点击次数:
According to the Regulations of Huazhong University of Science and Technology on the Transformati...
2020 - 07 - 01
点击次数:
Prof. Guang Yang’s group makes progress in self-healing hydrogels and wound healing18 June 2020...
2020 - 06 - 30
点击次数:
"Learning in Epidemic" series of cloud report, let the teachers and students better charge during...
2020 - 06 - 28
点击次数:
Synthesis of bacterial cellulose based on solid-g​as-liquid interfaceBacterial Cellulose (Bacter...
微博 / WeiBo
Enrollment Publications
pH-Responsive Poly(Ethylene Glycol)-block-Polylactide Micelles for Tumor-Targeted Drug Delivery
Date: 2017-08-11
page view:

 

Essay topicpH-Responsive Poly(Ethylene Glycol)-block-Polylactide Micelles for Tumor-Targeted Drug Delivery

AmbitOthers

AuthorLin Xiao, †,‡ Lixia Huang, †,‡ Firmin Moingeon, § Mario Gauthier, §,* Guang Yang†,*

Key words: pH-responsive, copolymer, micelles, drug delivery, tumor targeting

Source: journal

Specific source :DOI: 10.1021/acs.biomac.7b00509 Biomacromolecules 

Published:2017.08.04

Abstract:

A biodegradable micellar drug delivery system with a pH-responsive sheddable PEG shell was developed using an acetal-linked poly(ethylene glycol)-block-polylactide (PEG-a-PLA) copolymer and applied to the tumoral release of paclitaxel (PTX). The micelles with a diameter of ca. 100 nm were stable in PBS at pH 7.4, started shedding the shell and aggregating slowly at pH 6.5, and decomposed faster at pH 5.5. PTX-loaded micelles (M-PTX) with a drug loading of 6.9 wt% exhibited pH-triggered PTX release in simulated tumoral acidic environments corresponding to the extracellular and intracellular spaces. In vitro experiments showed that the micelles were non-cytotoxic to different cell lines, while M-PTX inhibited the proliferation and promoted the apoptosis of Hela cells. An in vivo study with Hela tumor-bearing mice indicated that M-PTX efficiently inhibited tumor growth. Due to these properties, the PEG-a-PLA micellar system appears to have bright prospects as a tumor-targeting drug carrier.

 

Address:Huazhong University of Science and Technology, No. 1037 LuoYu East Road, Hongshan District, Wuhan City, Hubei Province, 
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu Address: College of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu East  


Road, Hongshan District, Wuhan City, Hubei Province, China

All copyright Huazhong University of Science and Technology