set as homepage | add to favorites for collection | contact us
Notice:
PublicationsEnrollment
Hot News / Hot news
2020 - 08 - 23
点击次数:
Article: Applications of super hydrophobic liquid-solid friction nanogenerators as droplet sensor...
2020 - 08 - 19
点击次数:
[Research Trends] Professor Yang Guang's team, School of Life Sciences, Huazhong University of Sc...
2020 - 07 - 18
点击次数:
July 9, 2020Bricard and clemence, international students in 3-Bio research group, successfully co...
2020 - 07 - 15
点击次数:
On February 20th, Advanced Science published online the latest genetic and functional modificatio...
2020 - 07 - 10
点击次数:
According to the Regulations of Huazhong University of Science and Technology on the Transformati...
2020 - 07 - 01
点击次数:
Prof. Guang Yang’s group makes progress in self-healing hydrogels and wound healing18 June 2020...
2020 - 06 - 30
点击次数:
"Learning in Epidemic" series of cloud report, let the teachers and students better charge during...
2020 - 06 - 28
点击次数:
Synthesis of bacterial cellulose based on solid-g​as-liquid interfaceBacterial Cellulose (Bacter...
微博 / WeiBo
Enrollment Publications
Nano-cellulose 3D-networks as controlled-release Drug Carriers
Date: 2017-06-08
page view:

 

Essay topic:Nano-cellulose 3D-networks as controlled-release Drug Carriers

AmbitFunctional polymer

Author:Lin Huang,Xiuli Chen,Chuncheng Ruan,Huiru Tang,Liming Zhang,Guang Yang*

Key words: Drug Carriers,cellulose

Source: journal

Specific source :Journal of Materials Chemistry B 1(23): 2976-2984.

Published:2013.05

Abstract:

Bacterial cellulose (BC) membranes are used as the carrier for berberine hydrochloride and berberine sulphate to produce a new controlled release system. Release studies and transdermal experiments were carried out in vitro. Carrier BC can significantly extend the drug release time, in contrast to existing commercial carriers. Freeze-dried BC membranes 10 mm thick were optimized for drug delivery. The lowest release rate was in simulated gastric ?uid (SGF) or in H2SO4 solution, the highest in simulated intestinal ?uid (SIF) and intermediate rate was found in alkaline conditions. The release curves closely followed the Ritger-Peppas model with free diffusion the most prominent mechanism. Scanning electron microscopy (SEM) analysis demonstrated that BC fibers were swollen in acid and base conditions. 1H high-resolution magic angle spinning nuclear magnetic resonance (1H HRMAS NMR) diffusion-ordered spectroscopy (DOSY) analysis showed that there was an interaction between the drugs and BC. The structure of BC, the media and the solubility of the drug, all influenced the sustained-release behavior. The results from the release studies, the electron micrographs, and the transdermal experiments were good in agreement.

Address:Huazhong University of Science and Technology, No. 1037 LuoYu East Road, Hongshan District, Wuhan City, Hubei Province, 
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu Address: College of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu East  


Road, Hongshan District, Wuhan City, Hubei Province, China

All copyright Huazhong University of Science and Technology