set as homepage | add to favorites for collection | contact us
Notice:
PublicationsEnrollment
Hot News / Hot news
2020 - 08 - 23
点击次数:
Article: Applications of super hydrophobic liquid-solid friction nanogenerators as droplet sensor...
2020 - 08 - 19
点击次数:
[Research Trends] Professor Yang Guang's team, School of Life Sciences, Huazhong University of Sc...
2020 - 07 - 18
点击次数:
July 9, 2020Bricard and clemence, international students in 3-Bio research group, successfully co...
2020 - 07 - 15
点击次数:
On February 20th, Advanced Science published online the latest genetic and functional modificatio...
2020 - 07 - 10
点击次数:
According to the Regulations of Huazhong University of Science and Technology on the Transformati...
2020 - 07 - 01
点击次数:
Prof. Guang Yang’s group makes progress in self-healing hydrogels and wound healing18 June 2020...
2020 - 06 - 30
点击次数:
"Learning in Epidemic" series of cloud report, let the teachers and students better charge during...
2020 - 06 - 28
点击次数:
Synthesis of bacterial cellulose based on solid-g​as-liquid interfaceBacterial Cellulose (Bacter...
微博 / WeiBo
Enrollment Publications
Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound Healing Biomaterial
Date: 2017-06-07
page view:

 

Essay topicSilk Sericin-Functionalized Bacterial Cellulose as a Potential Wound Healing Biomaterial

AmbitFunctional polymer

Author:Lallepak Lamboni, Ying Li,  Jianfeng Liu,  Guang Yang*

Key words: Silk Sericin-Functionalized, Bacterial Cellulose, Wound healing

Source:Journal

Specific source :Biomacromolecules, 2016, 17 (9), pp 3076–3084

Published:2016.07

Abstract:Bacterial cellulose (BC) is a polysaccharide known as a suitable matrix for proper wound healing. To improve this ability, BC was functionalized with silk sericin (SS) that has cytoprotective and mitogenic e?ects. The composites obtained by solution impregnation were stabilized by hydrogen bonds, and SS could be released in a controlled manner. The constructs were highly porous with interconnected pores allowing for high water uptake that varied with the SS concentration used for sample preparation. While SS did not disrupt the stability of the BC network, soluble SS di?using from the composites did not in?uence keratinocyte growth but enhanced broblast proliferation, which would further optimize the wound healing process and improve extracellular matrix production, accelerating healing. Further, improved cell viability was observed upon the composites. Because of their attractive structure and properties, these BC?SS biomaterials represent potential candidates not only for wound dressing applications but also for tissue engineering.

 

Address:Huazhong University of Science and Technology, No. 1037 LuoYu East Road, Hongshan District, Wuhan City, Hubei Province, 
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu Address: College of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu East  


Road, Hongshan District, Wuhan City, Hubei Province, China

All copyright Huazhong University of Science and Technology