set as homepage | add to favorites for collection | contact us
Notice:
PublicationsEnrollment
Hot News / Hot news
2020 - 08 - 23
点击次数:
Article: Applications of super hydrophobic liquid-solid friction nanogenerators as droplet sensor...
2020 - 08 - 19
点击次数:
[Research Trends] Professor Yang Guang's team, School of Life Sciences, Huazhong University of Sc...
2020 - 07 - 18
点击次数:
July 9, 2020Bricard and clemence, international students in 3-Bio research group, successfully co...
2020 - 07 - 15
点击次数:
On February 20th, Advanced Science published online the latest genetic and functional modificatio...
2020 - 07 - 10
点击次数:
According to the Regulations of Huazhong University of Science and Technology on the Transformati...
2020 - 07 - 01
点击次数:
Prof. Guang Yang’s group makes progress in self-healing hydrogels and wound healing18 June 2020...
2020 - 06 - 30
点击次数:
"Learning in Epidemic" series of cloud report, let the teachers and students better charge during...
2020 - 06 - 28
点击次数:
Synthesis of bacterial cellulose based on solid-g​as-liquid interfaceBacterial Cellulose (Bacter...
微博 / WeiBo
Enrollment Publications
Microbial Cells with a Fe3O4 Doped Hydrogel Extracellular Matrix: Manipulation of Living Cells by Ma
Date: 2017-06-07
page view:

 

Essay topic:Microbial Cells with a Fe3O4 Doped Hydrogel Extracellular Matrix: Manipulation of Living Cells by Magnetic Stimulus

AmbitFunctional polymer

Author:Xudian Shi, Zhijun Shi, Daming Wang, Muhammad Wajid Ullah, Guang Yang*

Key words:Microbial Cells,Fe3O4 Doped,Extracellular Matrix

Source: journal

Specific source :Macromolecular Bioscience, 2016, 16, 1506-1514

Published:2016.07

Abstract:

This study aims to develop an effective method to control motile microorganisms and enable their manipulation as functional ‘live micro/nano robots’. A novel strategy based on Fe3O4 nanoparticle-doped alginate hydrogel is developed to fashion an artificial extracellular matrix (ECM) for microbial cells (e.g., Saccharomyces cerevisiae and Flavobacterium heparinum). During this strategy, a single layer of alginate hydrogel is coated around the microbial cells doped with Fe3O4 nanoparticles to form the alg-mag-cells. Transmission electron microscopy shows that Fe3O4 nanoparticles are uniformly distributed in the hydrogel shell. Together with maintaining the cell activity and metabolism, the hydrogel coated microbial cells demonstrate high magnetic responsiveness in an external magnetic

field and are able to form micro-scaled patterns using the magnetic template designed in this study. This strategy provides a building block to fabricate advanced biological models, medical therapeutic products, and non-medical biological systems using different microorganisms.


 

Address:Huazhong University of Science and Technology, No. 1037 LuoYu East Road, Hongshan District, Wuhan City, Hubei Province, 
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu
 Address: Department of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu Address: College of Life Science and Technology, East Campus, Huazhong University of Science and Technology, No. 1037 LuoYu East  


Road, Hongshan District, Wuhan City, Hubei Province, China

All copyright Huazhong University of Science and Technology