设为首页  |  加入收藏  | 联系我们
重要通知:
科研项目Enrollment
Hot News / 热点新闻
2024 - 01 - 26
点击次数:
华中科技大学刘长清团队、杨光教授团队联合博士后招聘启事一、团队负责人简介刘长清,华中科技大学机械...
2023 - 11 - 24
点击次数:
2023年10月13日至17日,由江明院士倡议并策划,杨光教授、陈红教授组织协调的“高分子学人书画邀请展”...
2023 - 08 - 20
点击次数:
由中国化学会主办,中国化学会纤维素专业委员会、贵州大学共同承办的“中国化学会第3届全国纤维素学术研...
2023 - 08 - 11
点击次数:
2023年8月9-11日,中国化学会第三届全国纤维素学术研讨会在贵阳市顺利召开,此次学术研讨会主题为“创新...
2023 - 08 - 01
点击次数:
织物型纳米摩擦发电机(Fabric-based TENGs)具有开发为织物型可穿戴器件的前景,其出色的输出性能、柔...
2023 - 04 - 19
点击次数:
2023年4月7日-4月9日,华东交通大学材料学院等单位主办的第一届生物材料与医疗器械赣江学术论坛在江西南...
2023 - 04 - 19
点击次数:
2023年4月11日晚上八点到十点半,华中科技大学与多伦多大学联合举办了“面向人类福祉的创新与未来技术”...
2023 - 03 - 28
点击次数:
2023 年 3 月 18 日, MDPI 作者培训会在华中科技大学生命科学与技术学院东十一楼 221 会议室召开。IJMS...
微博 / WeiBo
Enrollment 科研项目
具有调控细胞黏附与生长的细菌纤维素复合材料的微纳米构筑(Micro-nano-fabrication of bacterial cellulose composites capable of regu
日期: 2017-03-31
浏览次数:

项目类别:国家自然科学基金

项目编号:21074041

项目规模:面上项目

参与人员:杨光

起止时间:2011年1月-2013年12月

项目简介:

       本项目采用已建立的生物制造过程控制的方法,在生物合成过程中经分子模板、微流控和磁调控葡糖醋杆菌的定向运动,控制纤维素纤维的组装与排列;通过生物活性分子(壳聚糖、胶原、丝素蛋白等)或导电材料(碳纳米管、聚苯胺等)的复合改性,同时对纤维素纤维的表面官能团羟基进行修饰与活化,导入多重氢键和静电力等非共价键,设计和调控材料与细胞间的相互作用力。通过体系中分子结构、纳米结构和微米结构的多尺度效应,研究在组装过程中的纳米尺度效应和界面效应,阐明多组分精细结构的跨尺度形成机制。通过对成纤维细胞、神经元细胞、内皮细胞的黏附、生长、迁移等行为的生物学评价,揭示构筑条件对材料结构与性能的影响;阐明影响生物材料与细胞间相互作用的化学结构与物理因素,并构筑出可调控细胞黏附、生长的新型生物高分子复合材料,为运用于合理设计具有良好生物相容性的细胞培养器和人工器官提供重要科学依据。

     This project adopts the established methods of bio-manufacturing and process control, including molecular templating, micro-fluidictechnology and magnetically controlled orientation movement ofGluconacetobacter xylinus, to regulate the assembling and arrangement of cellulose fibers in biosynthetic process. The modification of cellulose fibers with bioactive molecules ( chitosan, collagen, silk fibroin, etc.) and/or conducting materials (carbon nanotubes, polyaniline, etc.), as well as the activation of surface hydroxyl groups should be performed to introduce non-covalent bondslike multiple hydrogen bonding and electrostatic attraction,  for the design and regulating of interactions between materials and cells. Afterwards, both the nano-scale and interface effects in the assembling process should be investigated, and the scale-span formation mechanism of multi-component and fine structures can be clarified according to the multi-scale effects of molecular structure, micron and nano structures in the cellulose fiber composite system. Finally, by the biological assessment of the adhesion, growth and migration behaviors of fibroblasts, endothelial cells and nerve cells, etc. we attempt to disclose the influence of construction conditions on the material structure and performances, and to clarify the chemical and physical factors affecting the interactions between biomaterial and cells. These studies will help to build up novel biopolymer composites which can regulate the adherence and growth of cells, and to provide an important scientific basis for rational design of cell culture devices and artificial organs with good biocompatibility.
Key words: Bacterial cellulose; fibroblast; endothelial cell; nerve cells; 

 

地址:武汉市洪山区珞瑜东路1037号华中科技大学东11楼生命科学与技术学院

版权所有  华中科技大学. 保留所有权利