设为首页  |  加入收藏  | 联系我们
重要通知:
最新新闻 / News
发布时间: 2024 - 01 - 26
点击次数:
华中科技大学刘长清团队、杨光教授团队联合博士后招聘启事一、团队负责人简介刘长清,华中科技大学机械科学与工程学院教授,博士生导师。1998年博士毕业于英国赫尔大学工程设计与制造专业。1997-2000年在英国伯明...
发布时间: 2023 - 11 - 24
点击次数:
2023年10月13日至17日,由江明院士倡议并策划,杨光教授、陈红教授组织协调的“高分子学人书画邀请展”在湖北武汉隆重举行。本次画展是科学与艺术的完美结合,旨在将高分子学人对科学、对艺术的真诚与热忱汇聚在...
发布时间: 2023 - 08 - 20
点击次数:
由中国化学会主办,中国化学会纤维素专业委员会、贵州大学共同承办的“中国化学会第3届全国纤维素学术研讨会”于2023年8月8-11日在贵州省贵阳市顺利召开。本次学术研讨会旨在交流和讨论纤维素科学与技术相关领域...
发布时间: 2023 - 08 - 11
点击次数:
2023年8月9-11日,中国化学会第三届全国纤维素学术研讨会在贵阳市顺利召开,此次学术研讨会主题为“创新纤维素高效利用,助推双碳目标实现”,主要围绕纤维素及可再生资源高效利用在新时代促进国民经济和社会发展...
发布时间: 2023 - 08 - 01
点击次数:
织物型纳米摩擦发电机(Fabric-based TENGs)具有开发为织物型可穿戴器件的前景,其出色的输出性能、柔性和可穿戴性受到了科研人员的广泛关注。然而,织物的缝隙结构往往会导致织物型摩擦发电机的表面积累污染物...
发布时间: 2023 - 04 - 19
点击次数:
2023年4月7日-4月9日,华东交通大学材料学院等单位主办的第一届生物材料与医疗器械赣江学术论坛在江西南昌举行。来自全国各地的专家学者汇聚一堂,共同探讨生物材料与医疗器械未来的发展走向。杨光教授受邀参与论...
发布时间: 2023 - 04 - 19
点击次数:
2023年4月11日晚上八点到十点半,华中科技大学与多伦多大学联合举办了“面向人类福祉的创新与未来技术”线上研讨会,两校的老师展开了热烈的讨论,其中杨光教授就该主题发表了见解与看法,本次联合研讨会圆满成功
最新动态News
Hot News / 热点新闻
2024 - 01 - 26
点击次数:
华中科技大学刘长清团队、杨光教授团队联合博士后招聘启事一、团队负责人简介刘长清,华中科技大学机械...
2023 - 11 - 24
点击次数:
2023年10月13日至17日,由江明院士倡议并策划,杨光教授、陈红教授组织协调的“高分子学人书画邀请展”...
2023 - 08 - 20
点击次数:
由中国化学会主办,中国化学会纤维素专业委员会、贵州大学共同承办的“中国化学会第3届全国纤维素学术研...
2023 - 08 - 11
点击次数:
2023年8月9-11日,中国化学会第三届全国纤维素学术研讨会在贵阳市顺利召开,此次学术研讨会主题为“创新...
2023 - 08 - 01
点击次数:
织物型纳米摩擦发电机(Fabric-based TENGs)具有开发为织物型可穿戴器件的前景,其出色的输出性能、柔...
2023 - 04 - 19
点击次数:
2023年4月7日-4月9日,华东交通大学材料学院等单位主办的第一届生物材料与医疗器械赣江学术论坛在江西南...
2023 - 04 - 19
点击次数:
2023年4月11日晚上八点到十点半,华中科技大学与多伦多大学联合举办了“面向人类福祉的创新与未来技术”...
2023 - 03 - 28
点击次数:
2023 年 3 月 18 日, MDPI 作者培训会在华中科技大学生命科学与技术学院东十一楼 221 会议室召开。IJMS...
微博 / WeiBo
News 新闻详情

CoFe2O4 Embedded Bacterial Cellulose for Flexible, Biodegradable, and Self-powered Electromagnetic Sensor

日期: 2022-08-26
浏览次数:

Self-powered flexible electromagnetic sensors based on flexible magnets are promising to be applied in wearable field. As the core component of motion sensors, flexible magnets require excellent mechanical and sensing properties. However, most reported flexible magnets were fabricated with non-degradable substrate materials via complicated processes which leads more serious pollution. Meanwhile, the non-contact type of flexible electromagnetic sensors is able to work in some harsh conditions. 

Recently, Professor Guang Yang’s 3Bio Group at College of Life Science and Technology, Professor Bin Su at Materials Science and Engineering, Huazhong University of Science and Technology reported a novel flexible, biodegradable and self-powered electromagnetic sensor as the title of CoFe2O4 Embedded Bacterial Cellulose for Flexible, Biodegradable, and Self-powered Electromagnetic Sensor based on CoFe2O4-embedded magnetic bacterial cellulose in the international journal of NANO ENERGY.

The flexible, biodegradable and self-powered electromagnetic sensor was prepared based on CoFe2O4-embedded magnetic bacterial cellulose, which is prepared by a facile and economical in-situ co-precipitation paired with a post-process of hot-pressing and magnetizing. Magnetic CoFe2O4 nanoparticles were synthesized in network structure of degradable bacterial cellulose for flexible composited magnetic films. Degradation experiment demonstrated that the flexible magnetic films degraded completely within 56 hours, and the left magnetic materials of CoFe2O4 nanoparticles could be recycled. Compared with nano-generator sensors and stress-strain sensors, the non-contact type of flexible electromagnetic sensors avoids the abrasion and damage from touch. In platform sensing test, the flexible electromagnetic sensor exhibits excellent stability (signal attenuation lower than 4% over 1000 cycles) and during the sensing performance test, the peak voltage was able to be adjusted from 0.17mV to 6.85 mV under steerable conditions. The maximum short circuit current reached 0.689 mA and maximum power density reached 1.33 mW·m-2. To deeply verify the application potential of the flexible electromagnetic sensors, an intelligent jacket, which was sewn with flexible magnetic film and copper coils was designed. It is capable of monitoring motion signals and distinguishing the motion state, proving that the biodegradable flexible electromagnetic sensor is promising to be utilized in wearable field as a kind of eco-friendly flexible sensor.

Figure 1. (a) The preparation process schematic of flexible magnetic film. (b) The surface AFM image of fiber network structure of pure BC. (c) The surface AFM image of composited magnetic film with CoFe2O4 nanoparticles. (d) The flexible magnetic film was attached to a block of iron handily. (e) The magnetic flux density pattern of the flexible magnetic film.

Figure 2. (a) Diagram of magnetic flux density of flexible magnetic films fabricated under different metal ion concentrations. (b) TG and (c) DTG curves of flexible magnetic films. (d) FT-IR spectra and (e) XRD patterns of flexible magnetic films. (f) Stress-strain curves of composited magnetic films hot-pressed with different numbers of layer.

Figure 3. (a) Photos of pure BC during degradation process within 4.5h. (b) Photos of flexible magnetic film during the degradation process within 56h. (c) Total sugar content of pure BC and flexible magnetic film during the whole degradation process. Red curve belongs to flexible magnetic film and black curve belongs to pure BC.

Figure 4. (a) Schematic diagram of induced voltage generation. (b) The sensor signals of flexible magnetic films prepared under different concentrations. (c) The peak voltage of signals in (b). (d) The sensor signals of flexible magnetic films in different relative speed. (e) The peak voltage of signals in (d). (f) The sensor signal of flexible magnetic films with different layers. (g) The peak voltage of signals in (f). (h) The motion signal over 1000 cycles. (i) A section of signals after 1000 cycles from (h).

Figure 5. (a) Schematic diagram of intelligent jacket. (b) Flexible magnetic film was sewn at the elbows of the jacket sleeves. (c) The relative position of flexible magnetic film and the copper coils. Red box is flexible magnetic film and yellow box is copper coils. (d) The copper coils were sewn in the interlayer of the jacket for invisibility. (e) The wave of a whole motion cycle in the walk (0.8 m/s) mode with two distinguish and intact waves with different directions. (f) The relation between amplitude and frequency with motion speed in each motion mode. (g) The sensor signal in four motion modes: walk (0.8 m/s), low-speed running (2 m/s), mid-speed running (3.5 m/s) and full-speed running (6.5 m/s).


该工作由华中科技大学生命科学与技术学院杨光教授团队与材料科学与工程学院苏彬教授团队共同合作完成。论文共同第一作者为华中科技大学博士生陈坤、华中科技大学硕士李一凡、华中科技大学杜卓林博士。华中科技大学杨光教授、华中科技大学苏彬教授、华中科技大学石志军博士为该文章的共同通讯作者。

该工作得到了金砖国家科技创新框架计划(3rd call 2019)、国家重点研发计划(批准号 2018YFE0123700)、国家自然科学基金(批准号 51973076 和 52073031)、国家纺织新材料与先进加工技术重点实验室(批准号:FZ2021005)和中央高校基本科研业务费专项资金(批准号:2020kfyXJJS035、WUT2018IVB006、Z191100001119047)等的支持。

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285522008187

论文引用:Kun Chen, Yifan Li, Zhuolin Du, Sanming Hu, Jianyu Huang, Zhijun Shi, Bin Su, Guang Yang,CoFe2O4 Embedded Bacterial Cellulose for Flexible, Biodegradable, and Self-powered Electromagnetic Sensor,Nano Energy,2022,107740,ISSN 2211-2855, https://doi.org/10.1016/j.nanoen.2022.107740.



相关新闻: / 相关新闻:
2024 - 01 - 26
华中科技大学刘长清团队、杨光教授团队联合博士后招聘启事一、团队负责人简介刘长清,华中科技大学机械科学与工程学院教授,博士生导师。1998年博士毕业于英国赫尔大学工程设计与制造专业。1997-2000年在英国伯明...
2023 - 11 - 24
2023年10月13日至17日,由江明院士倡议并策划,杨光教授、陈红教授组织协调的“高分子学人书画邀请展”在湖北武汉隆重举行。本次画展是科学与艺术的完美结合,旨在将高分子学人对科学、对艺术的真诚与热忱汇聚在...
2023 - 08 - 20
由中国化学会主办,中国化学会纤维素专业委员会、贵州大学共同承办的“中国化学会第3届全国纤维素学术研讨会”于2023年8月8-11日在贵州省贵阳市顺利召开。本次学术研讨会旨在交流和讨论纤维素科学与技术相关领域...
2023 - 08 - 11
2023年8月9-11日,中国化学会第三届全国纤维素学术研讨会在贵阳市顺利召开,此次学术研讨会主题为“创新纤维素高效利用,助推双碳目标实现”,主要围绕纤维素及可再生资源高效利用在新时代促进国民经济和社会发展...

地址:武汉市洪山区珞瑜东路1037号华中科技大学东11楼生命科学与技术学院

版权所有  华中科技大学. 保留所有权利